Q.P. Code: 18EE0211

$$G(s)H(s) = \frac{10}{S^2(S+1)(S+2)}$$

Q.P. Code: 18EE0211

OR

5 a For a unity feedback control system the open loop transfer function

$$G(S) = \frac{10(S+2)}{S^2(S+1)}$$

Determine the position, velocity and acceleration error constants?

b The steady state error when the input is a date of nomination

$$\mathbf{R(S)} = \frac{3}{s} - \frac{2}{s^2} + \frac{1}{3s^3}$$

UNIT-III

- 6 a With the help of Routh's stability criterion find the stability of the following systems 5M represented by the characteristic equation $s^4 + 8s^3 + 18s^2 + 16s + 5 = 0$
 - b With the help of Routh's stability criterion find the stability of the following systems 5M represented by the characteristic equation $s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 + 16s + 16 = 0$.

- 7 a Explain the procedure for constructing root locus?
 6M
 6M
 6M
 6M
 6M
 - G(s) H(s) = $\frac{K}{S(S+2)(S+4)}$.

UNIT-IV

8	a	Draw the magnitude bode plot for the system having the following transfer function	6M
		G(s) H(s) = $\frac{2000 (S+1)}{S(S+10) (S+40)}$	
	b	Define and derive the expression for resonant frequency?	4M
		Ordination between Dioch dingram Redo Ro. Toologique tod Signal Plan Ungb	
9	a	Obtain the transfer function of Lead Compensator and draw pole-zero plot.	5 M
	b	Write the procedure for design of Lead Compensator using Bode plot.	5M
10	a	A system is characterized by the following state space equations	5M
		$X_1 = -3 x_1 + x_2; X_2 = -2 x_1 + u; Y = x_1$	
		(i)Find the transfer function of the system and Stability of the system. (ii) Compute the STM	
	b	Define state, state variable, state equation.	5M
11		Find the state model of the differential equation is	C'M/
11	a	Find the state model of the differential equation is	JIVE
		y+2y+3y+4y=u	
	b	Obtain a state model for the system whose Transfer function is given by $G(s) H(s) = \frac{(7S^2 + 12S + 8)}{(S^3 + 6S^2 + 11S + 9)}$	5M

3.1

5M

5M